
ClangIR: Upstreaming an
Incubator Project

Bruno Cardoso Lopes, Meta
Andy Kaylor, NVIDIA

ClangIR recap

2

ClangIR timeline

3

ClangIR timeline

4

Incubator's purpose

5

6

From RFC to incubator

C/C++ MLIR frontend working group.

Move to LLVM incubator.

7

Incubation advantages

Ability to use CI and other LLVM project infrastructure

Project visibility

Path for building upstreaming agreement

The LLVM umbrella attracts more contributors

8

Incubation downsides

Less visibility than llvm-project

Users prefer llvm-project over a fork

Investment risk

Might never meet the bar

Never upstreamed

Incubation process is not formalized, consensus can be challenging

9

Life in clangir incubator

clangir.org guides

LLVM practices enforced ⚠
Paving the way for upstreaming

Additional freedom for exploration 󰲓

10

http://clangir.org

Challenges

Wait! I heard this was working

Always in motion is top-of-tree 󰝄
Upstream and incubator differences

11

Contributions

12

Authors come and go ✈
Contribution span varies

Good for incremental pieces (e.g. builtins)

Especially attractive to newcomers

Bad for solidifying expertise

Some couldn't wait for upstreaming

13

23 only contributed once

14

15

Challenging

… but worth it

Community up and running

Steady progress in upstreaming

Incubator - In hindsight

16

17

Upstreaming begins 🚀

18

A useful accident

● The contributors to the upstreaming effort
are mostly different than the original
contributors to the incubator

● Pierre Menard: Author of the Quixote

○ New contributors creating the same code

○ Fresh perspectives bring new context

● Wax on, wax off

○ Learning by going through the motions

● Result: twice as many people have deep
understanding of the code

19

Going live!

● Doing everything as if from scratch
○ The clang maintainers didn’t want the incubator

project merged en masse

○ There was no practical way to “replay” the
incubator commits

● Each PR for upstreaming code is treated exactly
as if it were a new contribution

● Each PR is held to the same standards as any
LLVM contribution

○ Contributor must thoroughly understand the code

○ All functionality must be tested

○ Conformance to coding standards

○ Single purpose

○ Isolated change, as small as possible

20

21

Upstreaming progress

22

23

CIR Won’t Always Go To LLVM IR

24

Growing pains

● Build problems
○ The ClangIR build sometimes gets broken by changes in MLIR or other parts of clang
○ Sometimes the incubator code is using AST interfaces that no longer exist upstream

■ This is part of the pain of rebasing the incubator
■ It also adds some overhead to the upstreaming process

● Chasing two moving targets
○ The incubator tried to follow the structure of clang’s LLVM IR codegen

■ …at the time the incubator code was written
○ Development is still proceeding in the incubator
○ Upstreaming pulls from the incubator, but we also need to check for changes in LLVM IR

codegen

25

Trying to synchronize with classic codegen

● We want generated CIR to be semantically equivalent to the LLVM IR clang
generates

● LLVM IR codegen is always changing
● Strategies

○ We’ve tried to use the same code structures whenever possible
■ CIRGenFunction looks very much like CodeGenFunction

○ Most of our tests check LLVM IR lowering from CIR and direct LLVM IR codegen
■ This will alert us when something changes in the non-CIR path

○ Eventually we’d like to run all existing codegen tests with CIR enabled

26

Embarrassingly Parallel Code?

 // Unary Operators.
 mlir::Value VisitUnaryPostDec (const UnaryOperator *e) {
 LValue lv = cgf.emitLValue (e->getSubExpr ());
 return emitScalarPrePostIncDec (e, lv,
cir::UnaryOpKind ::Dec,
 false);
 }
 mlir::Value VisitUnaryPostInc (const UnaryOperator *e) {
 LValue lv = cgf.emitLValue (e->getSubExpr ());
 return emitScalarPrePostIncDec (e, lv,
cir::UnaryOpKind ::Inc,
 false);
 }
 mlir::Value VisitUnaryPreDec (const UnaryOperator *e) {
 LValue lv = cgf.emitLValue (e->getSubExpr ());
 return emitScalarPrePostIncDec (e, lv,
cir::UnaryOpKind ::Dec,
 true);
 }
 mlir::Value VisitUnaryPreInc (const UnaryOperator *e) {
 LValue lv = cgf.emitLValue (e->getSubExpr ());
 return emitScalarPrePostIncDec (e, lv,
cir::UnaryOpKind ::Inc,
 true);
 }

 // Unary Operators.

 Value *VisitUnaryPostDec (const UnaryOperator *E) {

 LValue LV = EmitLValue (E->getSubExpr ());

 return EmitScalarPrePostIncDec (E, LV, false, false);

 }

 Value *VisitUnaryPostInc (const UnaryOperator *E) {

 LValue LV = EmitLValue (E->getSubExpr ());

 return EmitScalarPrePostIncDec (E, LV, true, false);

 }

 Value *VisitUnaryPreDec (const UnaryOperator *E) {

 LValue LV = EmitLValue (E->getSubExpr ());

 return EmitScalarPrePostIncDec (E, LV, false, true);

 }

 Value *VisitUnaryPreInc (const UnaryOperator *E) {

 LValue LV = EmitLValue (E->getSubExpr ());

 return EmitScalarPrePostIncDec (E, LV, true, true);

 }

clang/lib/CIR/CodeGen/CIRGenExprScalar.cpp clang/lib/CodeGen/CGExprScalar.cpp

27

Code sharing

● How do we keep CIR in sync with clang’s
LLVM IR codegen?

● Move common code into shared
components

● Can we use templates or concepts to
abstract IR-specific interfaces?

28

Getting help

● Upstreaming work requires discipline
● It doesn’t require prior in depth

understanding
● A great way to learn!
● We’ve gotten a lot of help from great new

contributors
● If you’d like to get involved, let us know!
● Come to the ClangIR roundtable tomorrow

at 2:15

29

compilerjobs@meta.com

