
Evolution of ClangIR

Bruno Cardoso Lopes
Nathan Lanza
Hongtao Yu

Vinicius Espindola

Agenda

● What's ClangIR?

● Progress & Challenges

● Future Plans

● Q&A Session

● Success stories of high-level IRs (Swift, Rust, …)

● C++ is hard: attack from every angle

○ AST is too high level

○ LLVM IR is too low level

Motivation

● Success stories of high-level IRs (Swift, Rust, …)

● C++ is hard: attack from every angle

○ AST is too high level

○ LLVM IR is too low level

Motivation

Scopes:

- Not explicitly in AST.

- LLVM IR: alloca's in the

function entry basic block.

What's ClangIR?

● A higher level IR in Clang

● Generated directly from Clang AST

● Implemented as an MLIR dialect for C/C++

What's ClangIR?

ClangIR: Types

ClangIR: AST references

ClangIR: Functions

Functions: source location, attributes

ClangIR: Scopes and Allocas

C++ full expressions

{

ClangIR: Idioms

Higher level operations: coroutines, lambdas, rtti, virtual calls, ABI

ClangIR: Idioms

Higher level operations: coroutines, std library, lambdas, rtti, virtual calls, ABI

ClangIR Pipeline

ClangIR Pipeline

$ clang-tidy --checks='-*,cir-lifetime-check' --config=...

ClangIR Pipeline

$ clang -cc1 -fclangir-enable -emit-cir …

ClangIR Pipeline

$ clang -cc1 -fclangir-enable -fclangir-lifetime-check …

ClangIR Pipeline

$ clang -cc1 -fclangir-enable -emit-llvm …

Progress
&

Challenges

● Follow the proven CodeGen skeleton

● Assert against unimplemented features

● Generate the same LLVM IR at baseline

● Avoid early optimization / premature lowering

Guiding Principles

Challenges

● Volume of work necessary for codegen

● Compile & execution time, binary size, memory usage, etc.

● Design decisions (e.g. ABI)

Challenges

● When to lower ABI? (e.g. calling conventions)

C++ source LLVM IR

CIR without CC lowering

CIR with CC lowering

LLVM Lowering

● Progressive lowering

● Simple tests as a starting point

● LLVM’s SingleSource test suite (≅50%)

Lifetime Checker

Lifetime Checker

Lifetime Checker

● Support for coroutines, lambdas,

pointer/owner semantics, etc

Lifetime Checker

● Integration with clangd, clang-tidy, internal

IDE and diff time linting

● Successful detection of lifetime bug that

caused a major internal outage

● Lifetime checker paves the way for more diagnostics

● Future: perf-driven diagnostics using PGO info and idiomatic C++.

○ Expensive copies detection.

○ Catch bad patterns: vector reallocs, expensive throws, hashmap/set rehashes, etc

● Implement Analysis Based Warnings using ClangIR

Diagnostics

Optimizations

● Copy Elision - avoid unnecessary copy constructions

○ When possible, use existing objects, byref, or move constructors

○ Benefits from more accurate lifetime analysis

auto I = Map.lower_bound(k);

if ((I != Map.end()) && (k == I->first))

 I->second = v;

else

 Map.insert(I, {k, v});

std::map<K, V> Map;

Map[k] = v;

● C++ idioms - semantics transforms based on C++ specific dialects
○ e.g. replace std::map[k] = v with std::map::insert(k,v) to avoid unnecessary

default construction

Optimizations

● PGO-driven

void foo()
{
 static std::string Prefix = "foo";
 // usage of Prefix
}

 =>

static std::string_view Prefix{"foo"};

void foo()
{
 // usage of Prefix
}

 to avoid __cxa_guard_acquire/__cxa_guard_release, when function foo is hot

Cross-Library optimization

● Support cross-library optimizations, currently only

supported in ELF LLD via partitioning

● Typical problem in mobile apps

● cir.library operation as a container for

cir.module

Community

● MLIR C/C++ front-end working group

● Adapting ClangIR to work with other tools

● GitHub PRs, issues, reviews, etc.

● Contributions to other projects

Future

● Integration with external projects

● Higher representations and progressive lowering

● C/C++ language extensions (CUDA, HLSL, SyCL, etc)

Questions?

